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Abstract: - The propagation of shear waves in an anisotropic fluid saturated porous layer sandwiched between 
homogeneous isotropic layer and isotropic half-space with irregularity present at the interface, has been examined. 
The dispersion equation for shear waves is derived by using the perturbation technique. The effect of wave 
number and irregularity are studied numerically. Also the dispersion curves for different size of irregularity are 
compared graphically with the help of MATLAB. This study shows that  the phase velocity is significantly 
influenced by the wave number and the size of irregularity. 
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1 Introduction 
The earth has a layered structure, and this exerts a 
significant influence on the propagation of elastic 
waves. The propagation of elastic waves in 
homogeneous layer is of considerable importance in 
earthquake engineering and seismology. The study 
of wave propagation in elastic medium with 
different boundaries is of great importance to 
seismologists as well as to geophysicists to 
understand and predict the seismic behavior at 
different margins of earth. The propagation of shear 
waves has been studied by many authors with 
assuming different forms of irregularities at the 
interface. Bhattacharya [2] discussed the dispersion 
curves for Love wave propagation in a transversely 
isotropic crustal layer with an irregularity in the 
interface. Jones [3] discussed wave propagation in a 
two layered medium. Chattopadhyay et al. [4] 
studied the propagation of SH guided wave in an 
internal stratum with parabolic irregularity in the 
lower interface. Konczak [5] derived dispersion 
equation for shear waves in a multilayered medium 
including a fluid saturated porous stratum. The 
influence of irregularity and rigidity on the 
propagation of torsional waves has been discussed 
by Gupta et al. [6]. Love wave propagation in a 
porous rigid layer lying over an initially stressed half 
space is discussed by Kundu et al. [7]. For the elastic 
and viscoelastic waves, a long list of references is 

available in the monographs of Lamb [8], Victorov 
[9], Miklowitz [10] and Kolsky [11].  
 In this paper we have discussed the 
propagation of shear waves in a transversely 
isotropic fluid saturated porous layer resting on a 
homogeneous elastic half space, lying under an 
elastic isotropic and homogeneous layer with 
irregularity at the interface. The irregularity is in the 
form of rectangle. The perturbation technique 
indicated by Erigen and Samuels [1] has been used. 
The dispersion curves are depicted by means of 
graphs for different size of irregularity and different 
values of common wave velocity. The influence of 
depth of irregularity on phase velocity and some 
special cases have been studied. 

 
 

2 Formulation of the Problem 
A transversely isotropic fluid saturated porous layer 
of thickness H2 resting on a homogeneous elastic 
half space, lying under an elastic isotropic and 
homogeneous layer of thickness H1 has been 
considered. The Cartesian coordinate system (x, y, z) 
is chosen with z-axes taken vertically downward in 
the half space and x-axes is chosen parallel to the 
layer in the direction of propagation of the 
disturbance. We assume the irregularity in the form 
of a rectangle with length s and depth 'H . The origin 
is placed at the middle point of the interface 
irregularity. The source of the disturbance is placed 
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on positive z axes at a distance d (d> 'H ) from the 
origin. Therefore, the upper layer describes the 
medium M1: 221 )( HzHH ≤≤+− , the 
intermediate layer describes the medium M2:

02 ≤≤− zH   and the homogeneous elastic half 
space describes the medium M3: ∞<≤ z0 .The 
geometry of the problem is shown in figure: 1. 

 
Figure 1: Geometry of the problem 
The interface between the layer and half space is 
defined as  
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3 Basic Equations 
The basic equations for the medium considered are 
as follows: 
  
3.1 For Medium M1 
 The equations of motion, without body force [12] 
are given by: 

,)1()1()1(
. ijij uρσ =                 (3) 

where ij
)1(σ are the components of stress tensor, 

)1(
iu  are the components of displacement vector, and 

)1(ρ is the density. The comma denotes 
differentiation with respect to position and dot 
denotes differentiation with respect to time. 

The constitutive relations are given by 
,2 )1()1()1()1()1(

ijijkkij ee µδλσ +=                 (4) 

where )1(λ and )1(µ are Lame’s elastic coefficients 
and ijδ  is the Kronecker delta and 
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3.2 For Medium M2 
The equation of motion for the intermediate fluid 
saturated porous layer in the absence of body forces 
are [13]: 
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where )2(
ijσ  are the components of stress tensor in 

the solid skeleton, fp−=)2(σ  is the reduced 
pressure of the fluid (p is the pressure in the fluid, 
and f is the porosity of the medium), )2(

iu are the 
components of the displacement vector of the solid 
skeleton and )2(

iU are these of fluid.  
The stress-strain relations for the transverse-
isotropic fluid saturated porous layer are [13]: 
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and 87654321 ,,,,,,, CCCCCCCC  are the material 
constants. 
 
3.3 For Medium M3 
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For the lower non-homogeneous half-space the basic 
equations of motion, without body force are [12]: 

,)3()3()3(
, ijij uρσ =                (10) 

where )3(
, jijσ are the components of stress tensor, )3(

iu  
are the components of displacement vector, and 

)3(ρ is the density. 
The constitutive relations are given by 

,2 )3()3()3()3()3(
ijijkkij ee µδλσ +=              (11) 

where )3(λ and )3(µ are Lame’s elastic coefficients 
and are functions of x, y, z and  
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In this paper, attention is confined to shear waves 
propagating in the xy-plane. The displacements are 
parallel to y direction and are independent of the y 
coordinate. Thus 

,0)1()1( ≡≡ wu  ),,,()1()1( tzxvv ≡  
,0)2()2( ≡≡ wu   ),,,()2()2( tzxvv ≡         (13) 
,0)2()2( ≡≡WU  ),,,()2()2( tzxVV ≡

,0)3()3( ≡≡ wu     ),,,()3()3( tzxvv ≡       
and the equations of motion (3), (6), (7) and (10) 
with the help of (4), (5) and (8), (9) and (11), (12) 
respectively reduce to the form 
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The appropriate boundary conditions for the 
considered problem are as: 
(i) At the free surface )( 21 HHz +−= , the shear 
stress component vanishes, i.e.,

.0)),(,( 21
)1(

32 =+−= tHHzxσ           (17) 

(ii) At the interface 2Hz −= , the displacements are 
continuous, i.e., 

).,,(),,( 2
)2(

2
)1( tHzxvtHzxv −==−=          (18) 

(iii) At the interface 2Hz −= , the shear stress 
components are continuous, i.e.,

).,,(),,( 2
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32 tHzxtHzx −==−= σσ        (19) 
(iv) At the interface )(xhz ε= , the displacements are 
continuous, i. e.,  

).),(,()),(,( )3()2( txhzxvtxhzxv εε ===        (20) 
(v) The stresses are continuous at the interface
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where
dx

xdhxh )()(' = . 

Thus equations (14)-(16) with above boundary 
conditions are the governing equations of the 
problem considered. 
 
 
4 Solution of the Problem: 
For waves changing harmonically with time t and 
propagating in x-direction, we obtain
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0
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),exp(),(),,( )3(
0

)3( tixzvtxzv ω=          (25) 
 where ω   is the angular frequency. 

Thus equations of motion (14)-(16) take the form of  
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 where    
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Ω  is the dimensionless frequency and Gc is the 
velocity of shear wave in the porous layer. 
Define the Fourier Transform ),(),( )1(

0
)1(

0 ηη zvofzv

as  ∫
∞

∞−

= dxexzvzv xiηη ),(),( )1(
0

)1(
0             (30) 

And inverse Fourier Transform is given by 
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The Fourier Transform of equations (26)-(28) then 
are  
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The solution of equations (32)-(35) is 
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where DBABA ,,,, are functions of .η  

Thus, by inverse Fourier Transform, we obtain

,)sincos(
2
1),( 11

)1(
0 ∫

∞

∞−

−+= ηχχ
π

η dezBzAxzv xi  (40)

,)sincos(
2
1),( 22

)2(
0 ∫

∞

∞−

−+= ηχχ
π

η dezDzCxzv xi

    
(41)

,)sincos(
2
1),( 22

)2(
0 ∫

∞

∞−

−+= ηχχ
π

η dezDzCxzV xi

     (42)

,)2(
2
1),( 333

3

)3(
0 ∫

∞

∞−

−−− += η
χπ

ηχχχ deeeEexzv xidzz

          (43)
 

where the second term in the integrand of ),()3(
0 xzv  

is introduced due to the source in the lower half 
space. 
The relations between the constants DC , and C, D 
are provided by eq. (15).  
We set the following approximations due to small 
value of ε  
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Since the boundary is not uniform, the terms
EDCBA ,,,,   in equation (44) are also functions of

ε . Expanding these terms in ascending powers of  
ε  and keeping in view that ε is small and so 

retaining the terms up to the first order of ε , 
EDCBA ,,,, can be approximated as in equation 

(44). In physical situations, when the depth 'H  of 
the irregular boundary is too small with respect to 
the length of the boundary s, the above assumptions 
are justified. Further for small ε
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whereα  is any quantity. 
Defining Fourier Transform of h(x) as 
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Now, by using boundary conditions (17)-(21) along 
with equations (40)-(41) and (43)-(44) we obtain a 
system of ten equations (after equating the absolute 
term (terms not containingε ) and the coefficients of
ε ): 
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where )(1 kR  and )(2 kR  are given by appendix-A. 
Solving the above system of equations for 

1111100000 ,,,,,,,,, EDCBAEDCBA and the 
corresponding values are given in Appendix-A. 
The displacement in the anisotropic layer is  
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where 2B  and 3B  are given by appendix-A. 
Now from equations (1), (2) and (45), we have 
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Using values of )(1 kR  and )(2 kR  as given in 
appendix-A, we obtain 
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where )( λφ −k is given in Appendix-A.  
Using asymptotic formula of Willis [14] and Tranter 
[15] and neglecting the terms containing 2/s and 
highest powers of 2/s for large s, we obtain 
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Now using equations (60) and (61), we obtain 
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Therefore the displacement in the anisotropic layer 
is 
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The value of this integral depends entirely on the 
contribution of the poles of the integrand. The poles 
are located at the roots of the equation 

{ } 0)('1)( 3 =− dekHkE χψ              (64) 
This equation is the dispersion equation for SH 
waves.  
If c  is the common wave velocity of wave 
propagating along the surface, then we can set in 
equation (64) ck=ω  (ω  is the circular frequency 
and k is the wave number), 
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Solving equation (64), we obtain 
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Since the quantity 2
2P  is complex, so we have

,212 ikkP +=                 (66) 
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Thus, the equation (65) is complex and its real part 
gives the dispersion equation for shear waves.  
 
 
5 Numerical Results   
In order to investigate the effect of irregularity 
present in the transversely isotropic fluid saturated 
porous layer and to compare the results numerically 
between the phase velocity and the wave number, 
we will use the values of elastic constants given by 
Haojiang Ding et al. [16] for medium M2 and 
Konczak [7] for medium M1 and M3. And by using 
MATLAB, we obtain the following graph for 
different values of common wave velocity c for two 
special cases as: 
 
Case I: - When H2=0, H1=H, that is the wave 
propagation in elastic homogeneous layer lying over 
a homogeneous half space: 
 

 
Figure 2: Variation of the dimensionless phase 
velocity ( Gcc / ) against the dimensionless wave 
number ( kH ) for different values of HH /' (0, 
0.15, 0.30, 0.45) and common wave velocity c=0.25. 
 

 
Figure 3: Variation of the dimensionless phase 
velocity ( Gcc / ) against the dimensionless wave 
number ( kH ) for different values of HH /' (0, 
0.15, 0.30, 0.45) and common wave velocity c=0.5. 

 
Figure 4: Variation of the dimensionless phase 
velocity ( Gcc / ) against the dimensionless wave 
number ( kH ) for different values of HH /' (0, 
0.15, 0.30, 0.45) and common wave velocity c=0.75. 
 
Case II: - When H1=0, H2=H, that is the wave 
propagation in a transversely isotropic fluid 
saturated porous layer lying over a homogeneous 
half space: 
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Figure 5: Variation of the dimensionless phase 
velocity ( Gcc / ) against the dimensionless wave 
number ( kH ) for different values of HH /' (0, 
0.15, 0.30, 0.45) and common wave velocity c=0.25. 
 

 
Figure 6: Variation of the dimensionless phase 
velocity ( Gcc / ) against the dimensionless wave 
number ( kH ) for different values of HH /' (0, 
0.15, 0.30, 0.45) and common wave velocity c=0.5. 
 

 
Figure 7: Variation of the dimensionless phase 
velocity ( Gcc / ) against the dimensionless wave 
number ( kH ) for different values of HH /' (0, 
0.15, 0.30, 0.45) and common wave velocity c=0.75. 

The dimensionless phase velocity ( Gcc / ) is 
plotted against the dimensionless wave number ( kH
) in Figures 2-7. It is clear from above figures that 
the phase velocity decreases with increase in wave 
number and also increase in the value of HH /' .  
 
6. Conclusions 
 
Propagation of shear waves in a transversely 
isotropic fluid saturated porous layer with 
irregularity over a homogeneous isotropic half space 
and lying under an elastic isotropic and 
homogeneous layer has been studied. The Eringen’s 
perturbation method is applied to find the dispersion 
equation and displacement field in the layer. The 
effect of dimensionless wave number on dispersion 
curve is shown graphically for different cases. 
Variation of phase velocity for different ratio of 
irregularity depth to the layer width is studied and 
shown graphically. It has been observed that: 
 
• In general the phase velocity of shear waves 

in transversely isotropic fluid saturated 
porous layer over a homogeneous half space 
with irregularity decreases with the increase 
in wave number. 

• Phase velocity is a function of wave number 
as well as layer width and depth of 
irregularity.  
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Thus, it is  concluded that the phase velocity in 
transversely isotropic fluid saturated porous layer 
sandwiched between isotropic layer and half space 
with irregularity at the interface is significantly 
affected by not only the depth of irregularity , but 
also by wave number and ratios of the depth of the 
irregularity to layer width and layer structure.  
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